Wireless Communication

Lecture 7

Coding and Error Control

Coping with Data Transmission Errors

- Error detection codes
 - Detects the presence of an error
- Automatic repeat request (ARQ) protocols
 - Block of data with error is discarded
 - Transmitter retransmits that block of data
- Error correction codes, or forward correction codes (FEC)
 - Designed to detect and correct errors

Error Detection Probabilities

Definitions

- P_b : Probability of single bit error (BER)
- P_1 : Probability that a frame arrives with no bit errors
- P₂: While using error detection, the probability that a frame arrives with one or more undetected errors
- P₃: While using error detection, the probability that a frame arrives with one or more detected bit errors but no undetected bit errors

Error Detection Probabilities

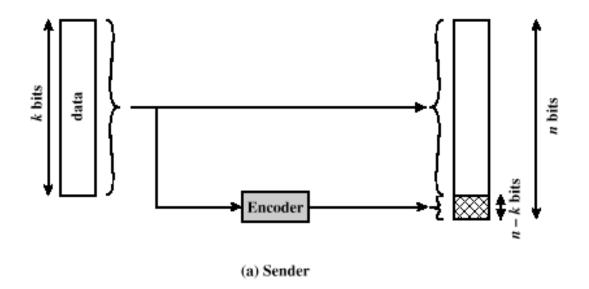
With no error detection

$$P_1 = (1 - P_b)^F$$

$$P_2 = 1 - P_1$$

$$P_3 = 0$$

F = Number of bits per frame


Error Detection Process

Transmitter

- For a given frame, an error-detecting code (check bits) is calculated from data bits
- Check bits are appended to data bits

Receiver

- Separates incoming frame into data bits and check bits
- Calculates check bits from received data bits
- Compares calculated check bits against received check bits
- Detected error occurs if mismatch

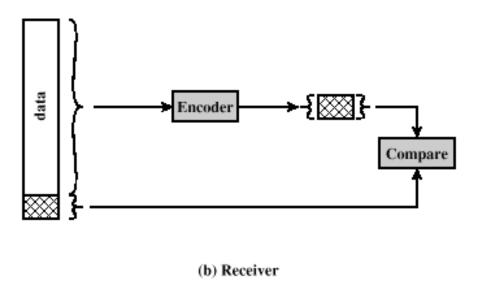


Figure 8.1 Error Detection Process

Parity Check

- Parity bit appended to a block of data
- Even parity
 - Added bit ensures an even number of 1s
- Odd parity
 - Added bit ensures an odd number of 1s
- Example, 7-bit character [1110001]
 - Even parity [11100010]
 - Odd parity [11100011]

Cyclic Redundancy Check (CRC)

Transmitter

- For a k-bit block, transmitter generates an (n-k)-bit frame check sequence (FCS)
- Resulting frame of n bits is exactly divisible by predetermined number

Receiver

- Divides incoming frame by predetermined number
- If no remainder, assumes no error

CRC using Modulo 2 Arithmetic

- Exclusive-OR (XOR) operation
- Parameters:
 - T = n-bit frame to be transmitted
 - D = k-bit block of data; the first k bits of T
 - F = (n k)-bit FCS; the last (n k) bits of T
 - P = pattern of n-k+1 bits; this is the predetermined divisor
 - Q = Quotient
 - R = Remainder

CRC using Modulo 2 Arithmetic

For T/P to have no remainder, start with

$$T = 2^{n-k}D + F$$

 Divide 2^{n-k}D by P gives quotient and remainder

$$\frac{2^{n-k}D}{P} = Q + \frac{R}{P}$$

Use remainder as FCS

$$T = 2^{n-k}D + R$$

CRC using Modulo 2 Arithmetic

Does R cause T/P have no remainder?

$$\frac{T}{P} = \frac{2^{n-k}D + R}{P} = \frac{2^{n-k}D}{P} + \frac{R}{P}$$

Substituting,

$$\frac{T}{P} = Q + \frac{R}{P} + \frac{R}{P} = Q + \frac{R+R}{P} = Q$$

No remainder, so T is exactly divisible by P

CRC using Polynomials

- All values expressed as polynomials
 - Dummy variable X with binary coefficients

$$\frac{X^{n-k}D(X)}{P(X)} = Q(X) + \frac{R(X)}{P(X)}$$
$$T(X) = X^{n-k}D(X) + R(X)$$

CRC using Polynomials

- Widely used versions of P(X)
 - CRC-12

$$X^{12} + X^{11} + X^3 + X^2 + X + 1$$

CRC-16

$$X^{16} + X^{15} + X^2 + 1$$

- CRC CCITT
 - $X^{16} + X^{12} + X^5 + 1$
- CRC 32
 - $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$

CRC using Digital Logic

- Dividing circuit consisting of:
 - XOR gates
 - Up to n k XOR gates
 - Presence of a gate corresponds to the presence of a term in the divisor polynomial P(X)
 - A shift register
 - String of 1-bit storage devices
 - Register contains n k bits, equal to the length of the FCS

Digital Logic CRC

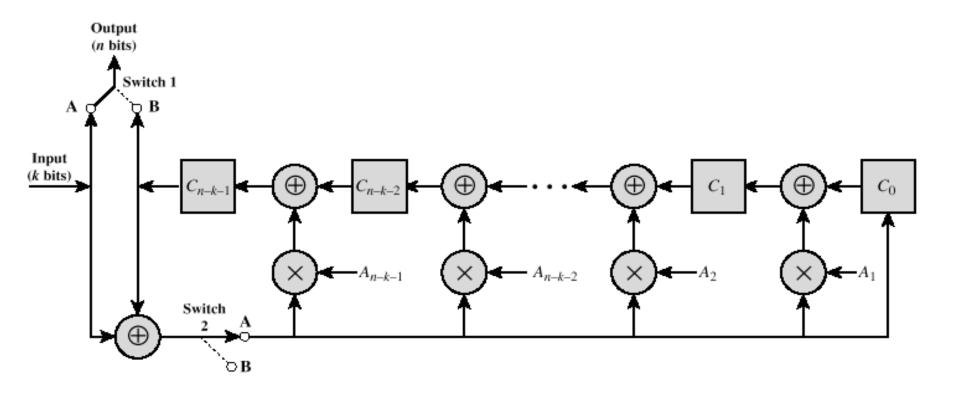
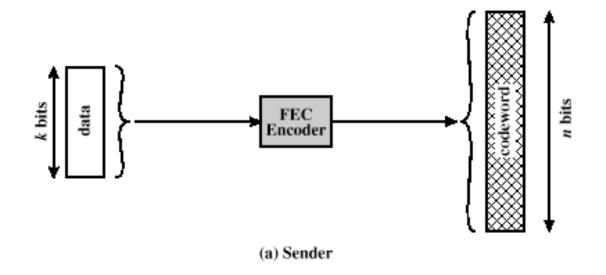


Figure 8.4 General CRC Architecture to Implement Divisor $1 + A_1X + A_2X^2 + ... + A_{n-1}X^{n-k-1} + X^{n-k}$

Wireless Transmission Errors

- Error detection requires retransmission
- Detection inadequate for wireless applications
 - Error rate on wireless link can be high, results in a large number of retransmissions
 - Long propagation delay compared to transmission time


Block Error Correction Codes

Transmitter

- Forward error correction (FEC) encoder maps each k-bit block into an n-bit block codeword
- Codeword is transmitted; analog for wireless transmission

Receiver

- Incoming signal is demodulated
- Block passed through an FEC decoder

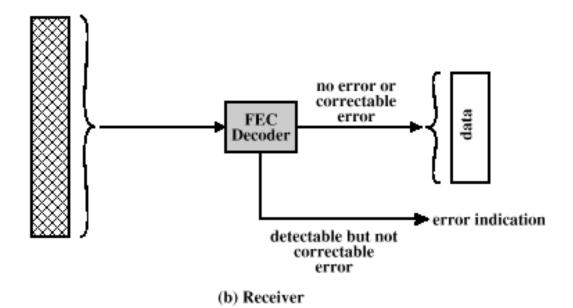


Figure 8.5 Forward Error Correction Process

FEC Decoder Outcomes

- No errors present
 - Codeword produced by decoder matches original codeword
- Decoder detects and corrects bit errors
- Decoder detects but cannot correct bit errors; reports uncorrectable error
- Decoder detects no bit errors, though errors are present

Block Code Principles

- Hamming distance for 2 *n*-bit binary sequences, the number of different bits
 - E.g., $v_1 = 011011$; $v_2 = 110001$; $d(v1, v_2) = 3$
- Redundancy ratio of redundant bits to data bits
- Code rate ratio of data bits to total bits
- Coding gain the reduction in the required E_b/N_0 to achieve a specified BER of an error-correcting coded system

Hamming Code

- Designed to correct single bit errors
- Family of (n, k) block error-correcting codes with parameters:
 - Block length: $n = 2^m 1$
 - Number of data bits: $k = 2^m m 1$
 - Number of check bits: n k = m
 - Minimum distance: $d_{min} = 3$
- Single-error-correcting (SEC) code
 - SEC double-error-detecting (SEC-DED) code

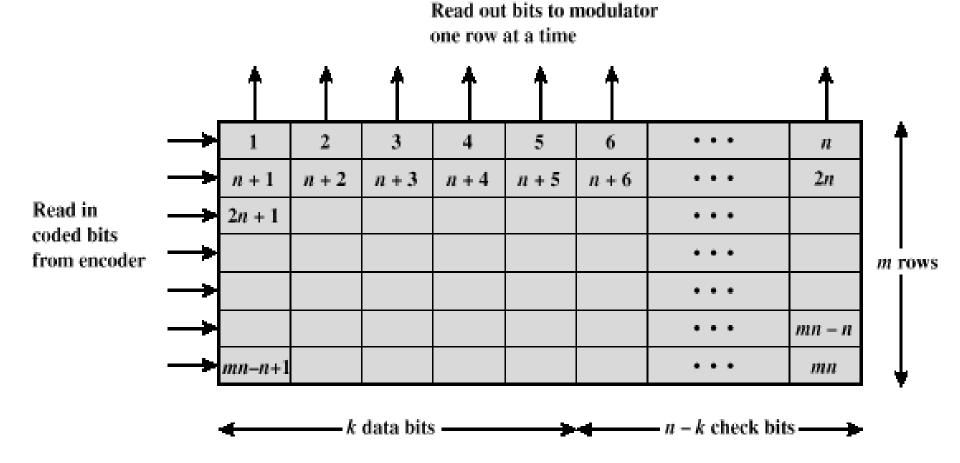
Hamming Code Process

- Encoding: k data bits + (n-k) check bits
- Decoding: compares received (n-k) bits with calculated (n-k) bits using XOR
 - Resulting (n-k) bits called syndrome word
 - Syndrome range is between 0 and 2^(n-k)-1
 - Each bit of syndrome indicates a match (0) or conflict (1) in that bit position

Cyclic Codes

- Can be encoded and decoded using linear feedback shift registers (LFSRs)
- For cyclic codes, a valid codeword (c_0 , c_1 , ..., c_{n-1}), shifted right one bit, is also a valid codeword (c_{n-1} , c_0 , ..., c_{n-2})
- Takes fixed-length input (k) and produces fixed-length check code (n-k)
 - In contrast, CRC error-detecting code accepts arbitrary length input for fixed-length check code

BCH Codes

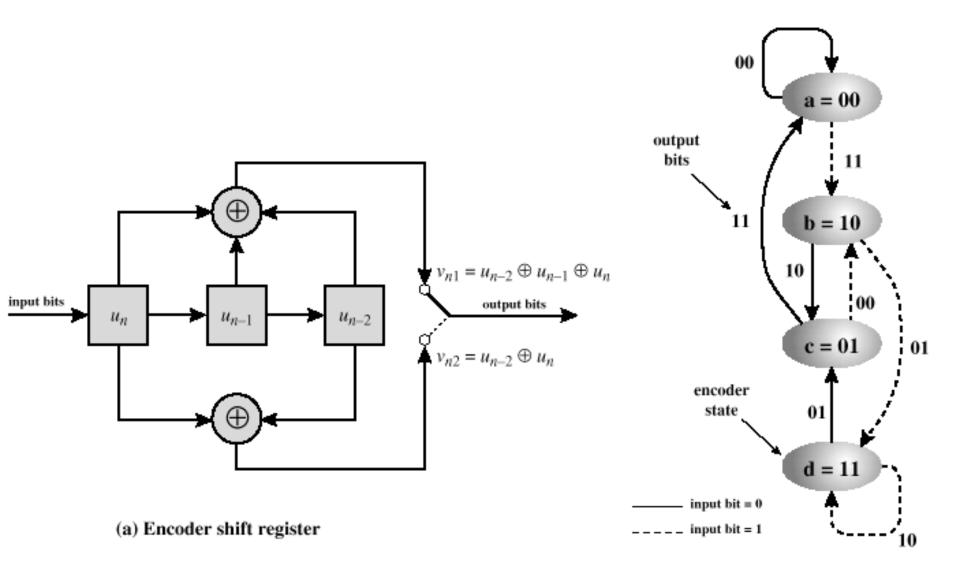

- For positive pair of integers m and t, a (n, k) BCH code has parameters:
 - Block length: $n = 2^m 1$
 - Number of check bits: $n k \le mt$
 - Minimum distance: $d_{\min} \ge 2t + 1$
- Correct combinations of t or fewer errors
- Flexibility in choice of parameters
 - Block length, code rate

Reed-Solomon Codes

- Subclass of nonbinary BCH codes
- Data processed in chunks of m bits, called symbols
- An (n, k) RS code has parameters:
 - Symbol length: m bits per symbol
 - Block length: $n = 2^m 1$ symbols = $m(2^m 1)$ bits
 - Data length: k symbols
 - Size of check code: n k = 2t symbols = m(2t) bits
 - Minimum distance: $d_{min} = 2t + 1$ symbols

Block Interleaving

- Data written to and read from memory in different orders
- Data bits and corresponding check bits are interspersed with bits from other blocks
- At receiver, data are deinterleaved to recover original order
- A burst error that may occur is spread out over a number of blocks, making error correction possible



Note: The numbers in the matrix indicate the order in which bits are read in. Interleaver output sequence: 1, n + 1, 2n + 1, ...

Figure 8.8 Block Interleaving

Convolutional Codes

- Generates redundant bits continuously
- Error checking and correcting carried out continuously
 - (*n*, *k*, *K*) code
 - Input processes k bits at a time
 - Output produces n bits for every k input bits
 - K = constraint factor
 - k and n generally very small
 - n-bit output of (n, k, K) code depends on:
 - Current block of k input bits
 - Previous K-1 blocks of k input bits

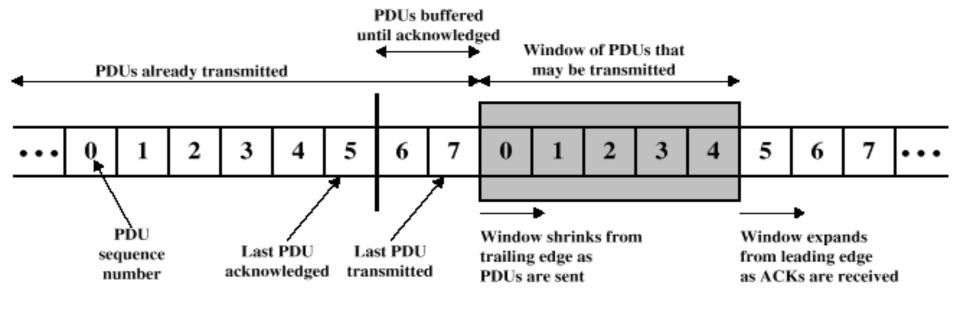
(b) Encoder state diagram

Figure 8.9 Convolutional Encoder with (n, k, K) = (2, 1, 3)

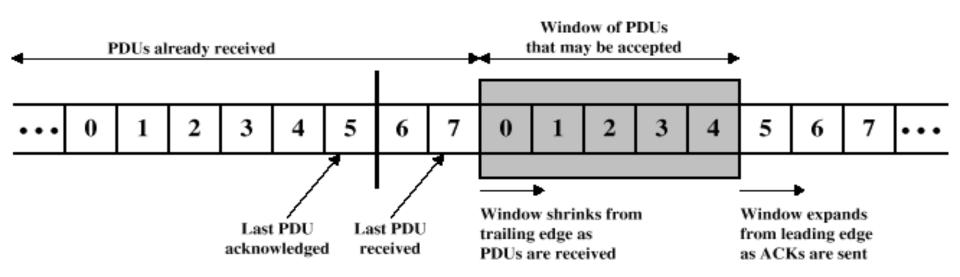
Decoding

- Trellis diagram expanded encoder diagram
- Viterbi code error correction algorithm
 - Compares received sequence with all possible transmitted sequences
 - Algorithm chooses path through trellis whose coded sequence differs from received sequence in the fewest number of places
 - Once a valid path is selected as the correct path, the decoder can recover the input data bits from the output code bits

Automatic Repeat Request


- Mechanism used in data link control and transport protocols
- Relies on use of an error detection code (such as CRC)
- Flow Control
- Error Control

Flow Control


- Assures that transmitting entity does not overwhelm a receiving entity with data
- Protocols with flow control mechanism allow multiple PDUs in transit at the same time
- PDUs arrive in same order they're sent
- Sliding-window flow control
 - Transmitter maintains list (window) of sequence numbers allowed to send
 - Receiver maintains list allowed to receive

Flow Control

- Reasons for breaking up a block of data before transmitting:
 - Limited buffer size of receiver
 - Retransmission of PDU due to error requires smaller amounts of data to be retransmitted
 - On shared medium, larger PDUs occupy medium for extended period, causing delays at other sending stations

(b) Receiver's perspective

Figure 8.17 Sliding-Window Depiction

Error Control

- Mechanisms to detect and correct transmission errors
- Types of errors:
 - Lost PDU: a PDU fails to arrive
 - Damaged PDU: PDU arrives with errors

Error Control Requirements

- Error detection
 - Receiver detects errors and discards PDUs
- Positive acknowledgement
 - Destination returns acknowledgment of received, error-free PDUs
- Retransmission after timeout
 - Source retransmits unacknowledged PDU
- Negative acknowledgement and retransmission
 - Destination returns negative acknowledgment to PDUs in error

Go-back-N ARQ

- Acknowledgments
 - RR = receive ready (no errors occur)
 - REJ = reject (error detected)
- Contingencies
 - Damaged PDU
 - Damaged RR
 - Damaged REJ