Wireless Communication

Lecture 5

Signal Encoding Techniques

Reasons for Choosing Encoding Techniques

- Digital data, digital signal
 - Equipment less complex and expensive than digital-to-analog modulation equipment
- Analog data, digital signal
 - Permits use of modern digital transmission and switching equipment

Reasons for Choosing Encoding Techniques

- Digital data, analog signal
 - Some transmission media will only propagate analog signals
 - E.g., optical fiber and unguided media
- Analog data, analog signal
 - Analog data in electrical form can be transmitted easily and cheaply
 - Done with voice transmission over voicegrade lines

Signal Encoding Criteria

- What determines how successful a receiver will be in interpreting an incoming signal?
 - Signal-to-noise ratio
 - Data rate
 - Bandwidth
- An increase in data rate increases bit error rate
- An increase in SNR decreases bit error rate
- An increase in bandwidth allows an increase in data rate

Factors Used to Compare Encoding Schemes

- Signal spectrum
 - With lack of high-frequency components, less bandwidth required
 - With no dc component, ac coupling via transformer possible
 - Transfer function of a channel is worse near band edges
- Clocking
 - Ease of determining beginning and end of each bit position

Factors Used to Compare Encoding Schemes

- Signal interference and noise immunity
 - Performance in the presence of noise
- Cost and complexity
 - The higher the signal rate to achieve a given data rate, the greater the cost

Basic Encoding Techniques

- Digital data to analog signal
 - Amplitude-shift keying (ASK)
 - Amplitude difference of carrier frequency
 - Frequency-shift keying (FSK)
 - Frequency difference near carrier frequency
 - Phase-shift keying (PSK)
 - Phase of carrier signal shifted

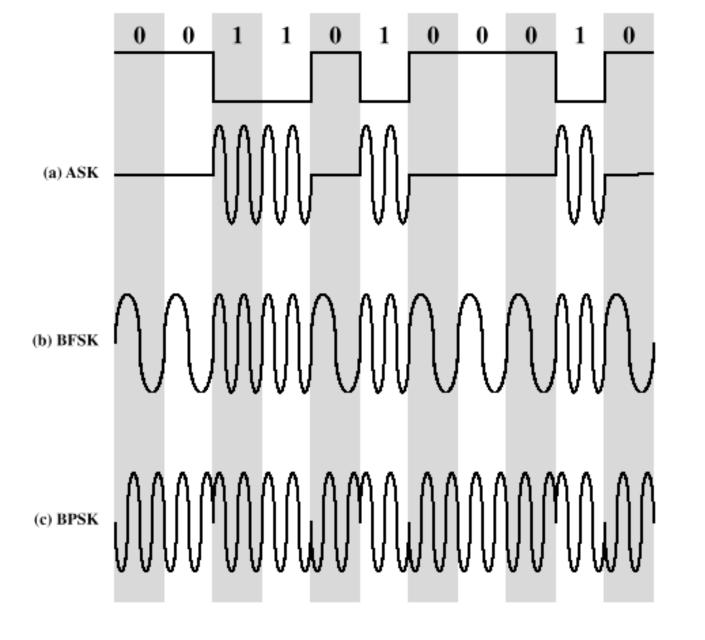


Figure 6.2 Modulation of Analog Signals for Digital Data

Amplitude-Shift Keying

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

• where the carrier signal is $A\cos(2\pi f_c t)$

Amplitude-Shift Keying

- Susceptible to sudden gain changes
- Inefficient modulation technique
- On voice-grade lines, used up to 1200 bps
- Used to transmit digital data over optical fiber

Binary Frequency-Shift Keying (BFSK)

 Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

• where f_1 and f_2 are offset from carrier frequency f_c by equal but opposite amounts

Binary Frequency-Shift Keying (BFSK)

- Less susceptible to error than ASK
- On voice-grade lines, used up to 1200bps
- Used for high-frequency (3 to 30 MHz) radio transmission
- Can be used at higher frequencies on LANs that use coaxial cable

Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
- More bandwidth efficient but more susceptible to error

$$s_i(t) = A\cos 2\pi f_i t$$
 $1 \le i \le M$

- $f_i = f_c + (2i 1 M)f_d$
- f_c = the carrier frequency
- f_d = the difference frequency
- M = number of different signal elements = 2 ^L
- L = number of bits per signal element

Multiple Frequency-Shift Keying (MFSK)

To match data rate of input bit stream, each output signal element is held for:

$$T_s = LT$$
 seconds

- where T is the bit period (data rate = 1/7)
- So, one signal element encodes L bits

Multiple Frequency-Shift Keying (MFSK)

Total bandwidth required

$$2Mf_d$$

- Minimum frequency separation required $2f_c=1/T_s$
- Therefore, modulator requires a bandwidth of

$$W_{o}=2^{L}/LT=M/T_{s}$$

Multiple Frequency-Shift Keying (MFSK)

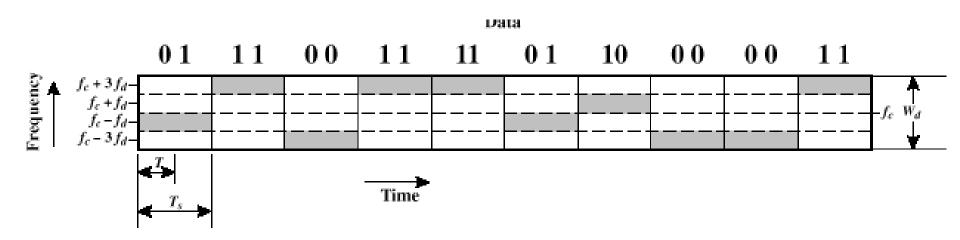


Figure 6.4 MFSK Frequency Use (M = 4)

- Two-level PSK (BPSK)
 - Uses two phases to represent binary digits

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 1} \\ \text{binary 0} \end{cases}$$

- Differential PSK (DPSK)
 - Phase shift with reference to previous bit
 - Binary 0 signal burst of same phase as previous signal burst
 - Binary 1 signal burst of opposite phase to previous signal burst

- Four-level PSK (QPSK)
 - Each element represents more than one bit

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

- Multilevel PSK
 - Using multiple phase angles with each angle having more than one amplitude, multiple signals elements can be achieved

$$D = \frac{R}{L} = \frac{R}{\log_2 M}$$

- D = modulation rate, baud
- R = data rate, bps
- M = number of different signal elements = 2^{L}
- L = number of bits per signal element

Performance

- Bandwidth of modulated signal (B_T)
 - ASK, PSK $B_T = (1+r)R$
 - FSK $B_7 = 2\Delta F + (1+r)R$
 - R = bit rate
 - 0 < r < 1; related to how signal is filtered
 - $\Delta F = f_2 f_c = f_c f_1$

Performance

■ Bandwidth of modulated signal (B_T)

• MPSK
$$B_T = \left(\frac{1+r}{L}\right)R = \left(\frac{1+r}{\log_2 M}\right)R$$

• MFSK
$$B_T = \left(\frac{(1+r)M}{\log_2 M}\right)R$$

- L = number of bits encoded per signal element
- M = number of different signal elements

Quadrature Amplitude Modulation

- QAM is a combination of ASK and PSK
 - Two different signals sent simultaneously on the same carrier frequency

$$s(t) = d_1(t)\cos 2\pi f_c t + d_2(t)\sin 2\pi f_c t$$

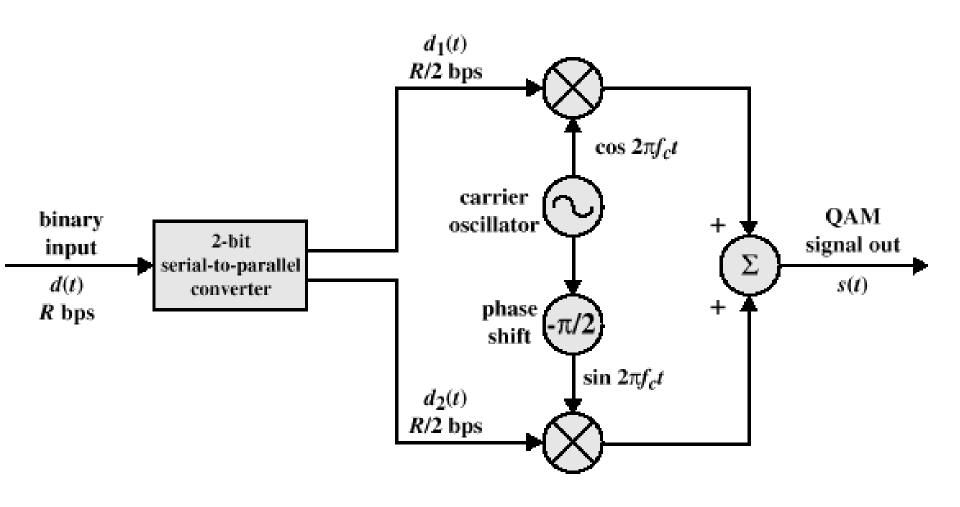
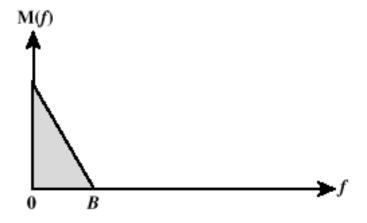


Figure 6.10 QAM Modulator

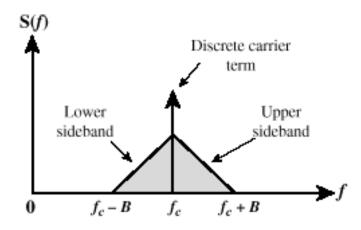
Reasons for Analog Modulation

- Modulation of digital signals
 - When only analog transmission facilities are available, digital to analog conversion required
- Modulation of analog signals
 - A higher frequency may be needed for effective transmission
 - Modulation permits frequency division multiplexing

Basic Encoding Techniques


- Analog data to analog signal
 - Amplitude modulation (AM)
 - Angle modulation
 - Frequency modulation (FM)
 - Phase modulation (PM)

Amplitude Modulation


Amplitude Modulation

$$s(t) = [1 + n_a x(t)] \cos 2\pi f_c t$$

- $\cos 2\pi f_c t = \text{carrier}$
- x(t) = input signal
- n_a = modulation index
 - Ratio of amplitude of input signal to carrier
- a.k.a double sideband transmitted carrier (DSBTC)

(a) Spectrum of modulating signal

(b) Spectrum of AM signal with carrier at f_c

Figure 6.12 Spectrum of an AM Signal

Amplitude Modulation

Transmitted power

$$P_t = P_c \left(1 + \frac{n_a^2}{2} \right)$$

- P_t = total transmitted power in s(t)
- P_c = transmitted power in carrier

Single Sideband (SSB)

- Variant of AM is single sideband (SSB)
 - Sends only one sideband
 - Eliminates other sideband and carrier
- Advantages
 - Only half the bandwidth is required
 - Less power is required
- Disadvantages
 - Suppressed carrier can't be used for synchronization purposes

Angle modulation

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

- Phase modulation
 - Phase is proportional to modulating signal

$$\phi(t) = n_p m(t)$$

• n_p = phase modulation index

- Frequency modulation
 - Derivative of the phase is proportional to modulating signal

$$\phi'(t) = n_f m(t)$$

• n_f = frequency modulation index

- Compared to AM, FM and PM result in a signal whose bandwidth:
 - is also centered at f_c
 - but has a magnitude that is much different
 - Angle modulation includes $cos(\emptyset(t))$ which produces a wide range of frequencies
- Thus, FM and PM require greater bandwidth than AM

Carson's rule

$$B_T = 2(\beta + 1)B$$

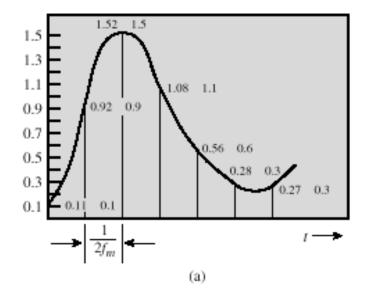
where

$$\beta = \begin{cases} n_p A_m & \text{for PM} \\ \frac{\Delta F}{B} = \frac{n_f A_m}{2\pi B} & \text{for FM} \end{cases}$$

The formula for FM becomes

$$B_T = 2\Delta F + 2B$$

Basic Encoding Techniques


- Analog data to digital signal
 - Pulse code modulation (PCM)
 - Delta modulation (DM)

Analog Data to Digital Signal

- Once analog data have been converted to digital signals, the digital data:
 - can be transmitted using NRZ-L
 - can be encoded as a digital signal using a code other than NRZ-L
 - can be converted to an analog signal, using previously discussed techniques

Pulse Code Modulation

- Based on the sampling theorem
- Each analog sample is assigned a binary code
 - Analog samples are referred to as pulse amplitude modulation (PAM) samples
- The digital signal consists of block of n bits, where each n-bit number is the amplitude of a PCM pulse

Digit	Binary Equivalent	PCM waveform
0	0000	
1	0001	_
2	0010	7
3	0011	7
4	0100	4
5	0101	7
6	0110	
7	0111	

Digit	Binary Equivalent	PCM waveform
8	1000	7
9	1001	4
10	1010	þ
11	1011	۲
12	1100	4
13	1101	4
14	1110	
15	1111	

Pulse Code Modulation

- By quantizing the PAM pulse, original signal is only approximated
- Leads to quantizing noise
- Signal-to-noise ratio for quantizing noise

$$SNR_{dB} = 20 \log 2^{n} + 1.76 dB = 6.02n + 1.76 dB$$

 Thus, each additional bit increases SNR by 6 dB, or a factor of 4

Delta Modulation

- Analog input is approximated by staircase function
 - Moves up or down by one quantization level (δ) at each sampling interval
- The bit stream approximates derivative of analog signal (rather than amplitude)
 - 1 is generated if function goes up
 - 0 otherwise

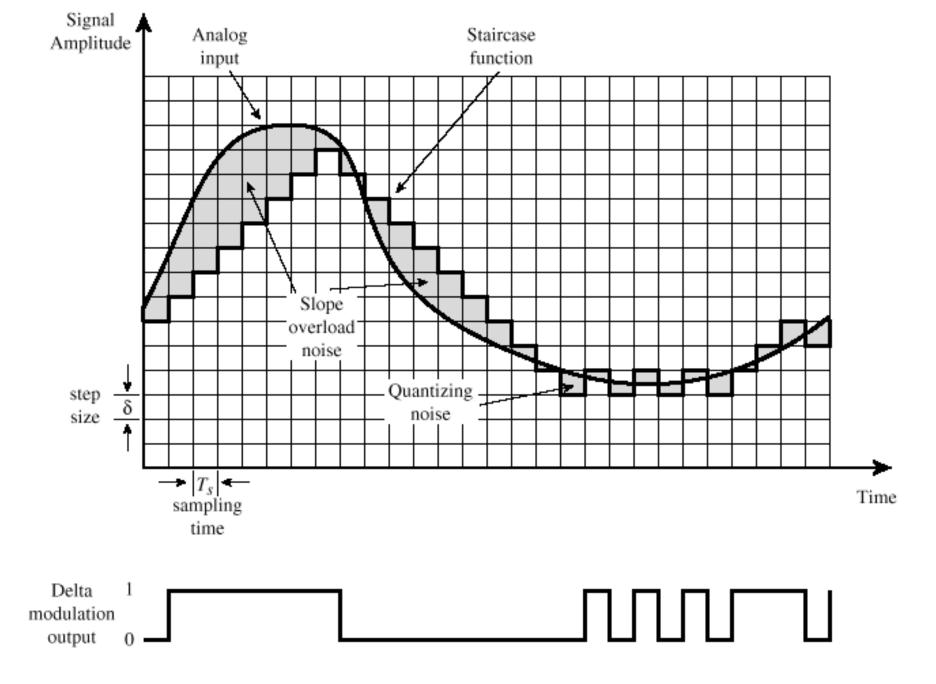


Figure 6.18 Example of Delta Modulation

Delta Modulation

- Two important parameters
 - Size of step assigned to each binary digit (δ)
 - Sampling rate
- Accuracy improved by increasing sampling rate
 - However, this increases the data rate
- Advantage of DM over PCM is the simplicity of its implementation

Reasons for Growth of Digital Techniques

- Growth in popularity of digital techniques for sending analog data
 - Repeaters are used instead of amplifiers
 - No additive noise
 - TDM is used instead of FDM
 - No intermodulation noise
 - Conversion to digital signaling allows use of more efficient digital switching techniques